
CNaaS NMS Training

CNaaS-NMS
1. Intro: Why, what

a. Zero-touch provision
b. Config management
c. Firmware upgrade

2. Operations: How to operate
a. Git repositories
b. Workflows
c. ZTP
d. Interfaces

3. Internals & Troubleshooting: When something goes wrong
a. Containers, processes
b. Databases

4. Integration & Development

Operations
Git repositories:

● templates: OS specific CLI templates written in Jinja2 (.j2 file extension)
● settings: OS independent settings written in YAML (.yml file extension)

○ NTP, RADIUS, syslog servers
○ VXLANs/SVIs, VRFs and routing
○ Core/Dist interfaces

● etc: OS config files
○ isc-dhcpd config for ZTP

Templates, access.j2 example
{% for intf in interfaces %}
interface {{ intf.name }}
{# -- ACCESS AUTO -- #}
{% if intf.ifclass == 'ACCESS_AUTO' %}
 {% if (intf.data.description is defined) and intf.data.description %}
 description {{ intf.data.description }}
 {% else %}
 description DOT1X
 {% endif %}
 poe reboot action maintain
 switchport
 switchport mode access
 storm-control broadcast level 7
 spanning-tree bpduguard enable
 spanning-tree portfast edge
 dot1x pae authenticator
 dot1x authentication failure action traffic allow vlan {{ dot1x_fail_vlan }}
 dot1x port-control auto
 dot1x mac based authentication
 {% if (intf.data.bpdu_filter is defined) and intf.data.bpdu_filter %}
 spanning-tree bpdufilter enable
 {% endif %}
 {% include 'access-tags.j2' %}

Settings, vxlans.yml

vxlans:
 student1:
 vni: 100500
 vrf: STUDENT
 vlan_id: 500
 vlan_name: STUDENT
 ipv4_gw: 10.200.1.1/24
 groups:
 - ALL_DEVICES

Indentation with spaces is important!

API, device/<>/generate_config
"available_variables": {
 "dhcp_relays": [
 {
 "host": "10.100.2.2"
 }
],
 "interfaces": [
 {
 "name": "Ethernet1",
 "ifclass": "ACCESS_TAGGED",
 "untagged_vlan": 500,
 "tagged_vlan_list": [
 500,
 501
],
...

Applying a change
1. Edit settings/templates repo
2. Git commit/push
3. Refresh settings/templates API call
4. Syncto dry_run API call, verify diff
5. Syncto live run API call

For access interface config update:

Update interface config API call -> dry_run -> live run

NMS Change Workflow

In local editor/platform WebUI

A. Update settings (YAML) or templates (Jinja2)
B. Commit and push to git repository

Via API / WebUI

1. Ask NMS-server to pull changes from git
2. Dry run on devices
3. Verify diff output
4. Deploy change (live run)

Config rendering

Git settings
(YAML)

Git templates (Jinja)

Database (SQL)

Network device

Replace config

Generates full device
config

Commit confirm modes

Mode 0 “no confirm”: deploy change without confirm timer

Mode 1 “per-device”: deploy change with commit timer, if device is
unreachable after commit rollback only the device that was unreachable

Mode 2 “per-job”: deploy change with commit timer, if any device in job fails
rollback all devices to previous configuration. Limited to 50 devices per job

Device synchronization
https://wiki.sunet.se/display/CNaaS/CNaaS+NMS+Synchronization

https://wiki.sunet.se/display/CNaaS/CNaaS+NMS+Synchronization

ZTP workflow

ZTP prerequisites

1. Pair of dist-switches with management domain (VLAN + IP Gateway)

2. Ifclass downlink interfaces configured on dist

3. ZTP vlan (vlan 1) configured on dist, DHCP relay to NMS

4. DHCP scope configured on NMS DHCPd

5. Redundancy requirements met for cabling, or redundant_link: false

User interfaces
1. WebUI - Used to: sync settings/templates, device list, ZTP, jobs, firmware

upgrade, access port config
2. CLI - Same as WebUI plus linknets
3. API CURL/Postman etc - Everything (template vars, re-init step 2, update

physical interfaces, update linknets)
4. (NAV - Access port config)

WebUI demo! 🪄

Internals, Nornir/NAPALM
Nornir is used to parallelize tasks (50 threads), each task runs NAPALM

NAPALM is used to talk to network devices
NAPALM is an abstraction layer that uses vendor-specific APIs like pyeapi to talk
to different devices

Each vendor OS is responsible for calculating diff of configs and replacing running
config with new config

Config is always fully replaced, never merged

NMS communication

Local changes
Configuration hash is generated after new config is sent to device

Before doing dry run the previous configuration hash is compared to new config
hash, if mismatch you get an error

If you want to overwrite local changes you have to syncto with force: true

If a device will have local changes for a bit change it to state UNMANAGED in
NMS

Internals, containers
1. API, running python source code for CNaaS-NMS
2. PostgreSQL, SQL database. API connects here via TCP 5432
3. Redis, in-memory key-value database. API connects here via TCP 6379
4. DHCPd, isc-dhcpd used for ZTP boot. Switch management connects here via

UDP 67
5. HTTPd, nginx for serving static files like firmwares and initial static config

Internals, processes of API

NGINX
Master+worker
processes

uWSGI

Flask API
python3

Mule
python3

Nornir
Task

Flask API
python3

Flask API
python3

Flask API
python3

Internals, databases
1. PostgreSQL, on-disk persistent

a. CNaaS-NMS tables defined in Python code using SQLAlchemy ORM
b. APScheduler tables for keeping track of future scheduled jobs
c. Alembic database schema version tracking

2. Redis, in-memory volatile
a. Cache for currently working/finished devices during job run
b. Cache for settings parsed from settings git repo

Internals, locking
Syncto job requires global “all-devices” lock

Refresh settings/templates requires global “all-devices” lock

-> it’s not possible run two syncto jobs in parallell, instead run one job which
includes all the devices you want to sync

Integration / customization
API user with client credentials flow, CLIENT_ID and CLIENT_SECRET

API configuration settings

settings_override

Plugin hooks: new managed device

